
Dynamically reconfigurable software components

Samuel Kamin & Lars Clausen
University of Illinois at Urbana-Champaign

1304 W. Springfield
Urbana, IL 61821

{kamin,lrclause}@cs.uiuc.edu

October 31, 2001

1 The need for small, flexible components

Two forces in the modern software engineering environment suggest a style
of program development in which small functional units — which we call
components — are separately deployed and combined to create complete
applications. These forces are the intense time-to-market pressures which
require great reusability of software, and the decreasing size and increasing
ubiquity of computers with communication capabilities. Traditional compo-
nents — subroutine libraries, COM or CORBA components — are highly
deployable but are too large. They provide extremely useful reusability at
a certain level, but they do not account for the most common case: when
a deployable unit is not quite what is needed, and needs to be modified.
For these cases, class libraries are better, but they are too bulky for some
applications.

The new world of ubiquitous, interacting devices will require that code
be highly mobile. In a collection of mutually-communicating devices, there
may be no standard configuration that all members can assume, except for
the most generic services. Just as installation of a large application on a
current workstation can involve the installation, or re-installation, of other
applications, so the small devices of the future will frequently need to install
small services on other devices with which it is attempting to collaborate.

Thus, we envision the need for small functional units of software. They
will be easily deployable, like COM components. But they must also be
very flexible to allow for reusability — like class libraries, but much more

1

so. Our best examples of components that have this level of generality are
macros, as in Lisp or the C++ template library. Unfortunately, macros do
not quite pass the deployability test, because they require re-compilation.
Indeed, some experts deny that macros are components at all.

2 Components are program generators

Thus, deployability is in direct conflict with flexibility, yet both are needed.
A way out of this dilemma is to use program-generating programs, a.k.a.
two-level programs. Since they are themselves programs, they are highly
deployable, but they can be arbitrarily sophisticated in the ways they choose
to generate programs and therefore are highly flexible.

Self-installing applications typically seen on PC’s are an example of this,
albeit at a rather gross level. They can take advantage of certain detectable
parameters of the system — e.g. the presence of some software packages,
user preferences indicated in a dialogue — to customize the installation. Un-
like COM components, the executable installers can produce very different
installations at different times.

The model of components as two-level programs is quite general. Be-
cause programs are generated late (at load time or run time), the program
generator can take into account numerous local conditions. Run time con-
stants can be propagated. Large and small components are both included
in the model, since the generated code may be arbitrarily efficient, avoid-
ing function calls, etc. (The latter is a benefit often claimed for the C++
template library.)

Thus, in our view, software of the future will be distributed as two-
level code, to be run on the client’s computer (with appropriate parameters
provided) to produce the executable application. This will permit highly
abstract, parameterized, reusable code that is, at the same time, highly
efficient.

3 Producing program generators

There is one gap in our presentation: we haven’t said how to produce such
program-generating components. This is ordinarily done in one of two ways:
manually or automatically. Manually written programs generators usually
produce their result in the form of a string or abstract syntax tree that must
be compiled after it is generated; producing machine code directly is too dif-
ficult. Program generators can be produced automatically by, for example,

2

partial evaluation; however, there is a limit to the kind of program genera-
tors that can be produced this way. Thus, manually written generators are
source-based and therefore fail the deployability test, while automatically
produced generators have limited functionality.

In our research, we have used the concept of compositional compilation,
drawing on the concept of compositionality from denotational semantics, to
produce flexible, binary code generators using a two-level language. That
research is described in [1]. Compositionality allows programs to be split into
almost arbitrarily small pieces, then combined to produce relatively efficient
code. Furthermore, a comparatively simple notation, using the well-known
technique of quotation and anti-quotation (just as is often used in macro
systems) can produce these program generators. And, finally, the notion
of compositionality allows for a great variety of data to be included in a
component, data that can be used to generate more efficient target machine
code, or to support some other service such as security or regenerability.

4 Standardization of data representations

To support code generators, we anticipate the standardization of certain
data representations that have not been standardized as of yet. Machine
language itself will, we predict, be substantially standardized in the future
(whether on an actual machine architecture or an abstract machine we do
not say). The need to componentize software will make portability among
different target architectures appear to be a needless burden.

Thus, we would anticipate development of a common code exchange for-
mat (CCE), which in our current work we take to be Java virtual machine
code. This will already imply a common representation for primitive types
and a common function-invocation protocol. Beyond that, we will see stan-
dardized representations for lists, tuples, and objects. Such standardization
will be needed not to make programs themselves portable, but to make
program-generating components portable.

5 Components are higher-order values

In [1], we defined a “component of type τ” to be a value of type τ , where
types are formed from this grammar:

τ ∈ Type = int | float | . . . other primitive types . . . | CCE
| τ1 × τ2 | τ1 list | τ1 → τ2

3

A component of type τ has “clients of type τ ,” meaning values of type
τ → CCE. Thus, a client is a function that, when applied to a component,
produces a piece of code1

We note that the use of higher-order values (values taking functions as
argument and/or returning them as results), previously confined mainly to
the functional programming world, is critical here. For example, consider
a component that generates code for finite state machines. The client will
need to pass a high-level definition of a finite state machine to the com-
ponent, including actions to be taken at appropriate points. The type of
the component would be FSMDef → CCE, and the type of a client of this
component would be (FSMDef → CCE) → CCE.

6 Components are objects

For this discussion, we will modify the above definition slightly, in that
types will be represented by classes, and values by objects. We encode the
constructors above in classes whose details are not of interest, so long as
they implement appropriate interfaces:

C is a τ1 × τ2-class if it implements the methods π1 :→ C1 and π2 :→
C2, where C1 is a τ1-class and C2 is a τ2-class.

C is a τ -list-class if it implements methods hd :→ C1 and tl :→ C,
where C1 is a τ -class.

C is a (τ1 → τ2)-class if it implements the method apply : C1 → C2

where C1 is a τ1-class and C2 is a τ2-class.

We have switched from functions to objects to help us make our next
point. We take it that the primary responsibility of a component is, under
the right circumstances, to enable the client to generate code. Thus, if a
component is an object of a τ -class, then the client must be an object of a
(τ → CCE)-class. We are speaking of objects only, which is to say, packages
containing data and executable code; thus, we are operating entirely at the
binary level.

To achieve true mobility, components will need to carry more data and
supply more services. Here is where the use of objects helps. Examples are:

1Actually, we assume a type Code such that every client has a standard coercion func-
tion genml:Code→CCE. Then, “CCE” would be replaced by Code in the discussion above.
This distinction is not important at the level of abstraction of this presentation.

4

• Produce documentation. Build the set of types again, but using
DocString in place of CCE. A component may be a τ -class (in the
above sense) and also a τ [CCE 7→ DocString]-class2; that is, it im-
plements both interfaces. Again, a client contains a method gendoc:
τ [CCE 7→ DocString] → DocString, so that when applied to a com-
ponent, appropriate documentation is produced.

• Produce proofs. Proof-carrying code [] is a method of guarantee-
ing certain properties of a piece of code by providing a proof — which
the client may verify — of that property. Our components can contain
parameterized proofs; that is, they can be objects of τ [CCE 7→ Proof]-
classes, and clients can contain genproof: τ [CCE 7→ Proof] →
Proof .

• Reconstruct. A component may provide a method of reconstructing
its “provenance,” that is, the original source of its sub-components.
Suppose that by “source” we mean a script containing URL’s. Again,
generate types as above, using URL-script in place of CCE. The gen-
Provenance method obtains the parameterized script of the compo-
nent and produces an actual script, from which the component could
be reconstructed (with up-to-date versions of its constituents).

Each of these services require a great deal of study, and undoubtedly
other, even more difficult, services will be created.

References

[1] Sam Kamin, Miranda Callahan, and Lars Clausen. Lightweight and
generative components I: Source-level components. In K. Czarnecki and
U.W. Eisenecker, editors, Generative and Component-Based Software
Engineering (GCSE’99), volume 1799 of LNCS, pages 49–62, Septem-
ber 28–30 1999.

2The notation reads, “τ with occurrences of CCE replaced by DocString.”

5

